
 

ABSTRACT 
High performance stream processing is computationally 

intensive and localized, performing the same operations on many 
data elements. These characteristics lend themselves for efficient 
hardware acceleration. In this paper, we describe a streaming 
programming model in which computation and data 
communication are explicitly separated and optimized. We then 
briefly describe hardware accelerators using the streaming 
programming model in two forms: an SoC coprocessor called 
RSVP (Reconfigurable Streaming Vector Processor), and a 
synthesizable hardware accelerator using our architectural 
synthesis tool called Proteus. We provide a retrospective of 
performance, cumulating more than eight years of research in 
streaming hardware accelerators.  

1. INTRODUCTION 
Streaming processors are becoming a mainstream paradigm 

being applied to high performance computing. In certain 
applications, streaming is becoming a necessary element to 
satisfy the computations’ needs such as low latency and high 
throughput. The computing model may also lend itself to 
efficient energy consumption with more efficient handling of 
memory accesses. 

Stream processors operate on data sequences using localized 
computation kernels. The memory access can be deterministic 
such that computation can hide memory latency with data 
prefetching. These characteristics, in turn, expose data 
parallelism for the computing platform, enabling a compiler to 
schedule data movement apart from the computation. By 
operating on large sets of data, the streaming computation 
reduces instruction overhead and hardware accelerator setup 
time.  

This paper is structured as follows. In Section 2, we argue for 
a streaming programming model whereby the computation and 
communication are explicitly defined by the programmer. In 
Section 3, we present the stream hardware accelerators, 
including an SoC coprocessor and a toolset allowing automatic 
hardware synthesis. Section 4 summarizes our observations 
about these accelerators as well as the toolset development.  

2. STREAMING PROGRAMMING MODEL 
There are several programming languages that describe how 

computation should be performed in streaming architectures. 
Some examples are StreamIT[1], Brook[2], and Streamware[3]. 
We advocate a stream programming paradigm with separation of 
concerns between the tasks related to computation and 
communication. This separation of concerns decomposes the 
software into manageable and comprehensible parts where we 
can more easily identify and expose areas for performance 
improvement. Presently, we use a stream programming model 
that allows a programmer to explicitly define the data streams 
between computation kernels or from memory. Tasks such as 

data loads, stores, and alignment are assigned to dedicated 
mechanisms called stream units. Tasks related to the actual 
computation are grouped as a kernel and assigned to dedicated 
hardware mechanisms called datapaths. The datapath consists of 
functional units with a flexible interconnection network [4,5]. 
Figure 1 illustrates an architectural template consisting of stream 
units and datapath. 

The stream units make use of data prefetching and alignment 
techniques to move data elements ahead of the computation and 
arrange them in the order needed by the datapath. This is crucial 
to keep the functional units busy; otherwise the performance 
gains would not be as significant. 

A kernel of computation is a set of localized processor 
operations that are independent and self-contained. The 
processing in each kernel is regular or repetitive, which often 
comes in the form of a loop structure. These computation kernels 
can operate without frequent external interactions with other 
kernels. Global variables are usually not referenced in a kernel. 
Instead, the stream and other scalar values, which hold persistent 
state, are identified explicitly as variables in a data stream or as 
signals between kernels. Kernel regularity, in turn, produces 
uniform memory access of data elements (or data streams). 
Stream data appear to be sequential to the computation kernels 
even though data is usually scattered throughout memory. 

The programmer defines a computation kernel using a 
streaming data flow graph (sDFG) language [6]. A sDFG 
consists of nodes, representing basic arithmetic and logical 
operations, and directed edges representing the dependency of 
one operation on the output of a previous operation. Each node 
is denoted by a descriptor, which specifies the following: input 
operands, the operation, the minimum precision of its output 
value, and the signedness of the output result. 

To express memory access or communication tasks, the 
programmer uses stream descriptors as an application 
programming interface (API) to express the shape and location 
of data in memory [7]. Within this paradigm, we define the term 
stream element as the individual datum for processing.  For 
image processing applications, pixel values in an image are the 
usual stream elements. A group of stream elements makes up a 
stream record. The grouping and the order of the stream 
elements in the stream record corresponds to the preferred 
alignment of the computation kernel. A stream descriptor is 
represented by a seven tuple field consisting of the following: a 
start_address of the first element in a stream record, a stride 
value indicating the spacing in stream elements between two 
consecutive elements in the stream record, a span value 
indicating the number of stream elements that are gathered 
before the skip offset is applied, a skip value indicating the 
displacement in stream elements that is applied between groups 
of span elements, a type indicating how many bytes are in each 
element, and a stream_count value for the number of elements in 
the stream record. 
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Fig 1. Streaming accelerator template with Stream Unit and Data Path 

3. STREAM HARDWARE ACCELERATORS  
Our hardware architecture is based on a streaming accelerator 

template consisting of stream units and a datapath. Stream units 
transfer data to and from the memory system, while the datapath 
performs stream computation on the data. The accelerator runs 
alongside the host processor instruction flow, without 
participating with its control flow. Software synchronization for 
data coherence is needed for the accelerator to operate 
asynchronously with the host processor. 

Reconfigurable Stream Vector Processor  
RSVP™ is an SoC implementation based on the streaming 

accelerator template. The first chip has been fabricated using 
TSMC 0.18µm CMOS technology, it has 9.5-M transistors and 
an area of 5.04 × 9.03 mm2. It is integrated into an ARM946ES-
based SoC with a complete set of peripherals for an embedded 
camera. A second generation design was completed but not 
fabricated. Readers are referred to [4,6] for more information. 

The use of RSVP has shown performance gains that range 
from two to twenty times when compared to a conventional 
scalar core. Originally targeted for multimedia processing, the 
application suite consists of image processing, video codec and 
other computer vision algorithms.  

There are several development tools that facilitate application 
development on the RSVP architecture. Among those tools is a 
cycle-accurate simulator of a system that includes RSVP, an 
ARM scalar core, and a memory controller which is capable of 
simulating the behavior of the memory hierarchy, including 
latency from the bus and most DRAM modules. The cycle 
accurate simulator can collect metrics on the data transfers of the 
scalar core, RSVP, and memory controller. 

Proteus Toolset 
The Proteus toolset [5] uses a template-based approach to 

produce area-efficient hardware designs based on the constraints 
of the application, user requirements, and system constraints. 
The processor template consists of a memory mapped hardware 
accelerator consisting of stream units and a datapath. 

The following describes the Proteus design flow. First 
selected kernels of the sDFGs and stream descriptors are used to 
allocate a set of functional units (within resource constraints set 
by the user). Then the computation sequence, resembling a series 
of VLIW (very long instruction word) instructions, is defined 

using modulo scheduling so that the processing can operate 
properly. Next, an interim hardware description file is created to 
list the components within the accelerator. A set of state 
machines is also created to generate the proper control signals 
for each functional unit. The hardware description (Verilog) is 
then generated and synthesized into an FPGA. This process is 
repeated for each streaming kernel. 

The stream unit design is also generated based on 
processing needs, in addition to user and system constraints. The 
size and number of buffer elements are chosen to meet the 
performance of the bus as well as the target performance of the 
generated datapath. For example, the size of the bus address 
queue is set so that bus transfers are sustained without stalling 
the datapath. The number of line buffers used to store data is set 
so that the stream unit can buffer the proper number of elements 
consumed by the datapath in each cycle. 

We have shown performance improvements of Proteus 
generated hardware accelerators for several applications [8]. As 
an example, Table 1 shows the execution time of a lens 
distortion correction algorithm in a software implementation on 
a 2.5 GHz Core 2 Quad processor and FPGA hardware running 
on the Virtex-4 LX-80, 62.5 MHz FPGA [9]. For this 
application, Proteus generated 100K lines of synthesizable 
Verilog and appropriate testbench from 800 lines of sDFG code. 

Table 1. Performance comparison between Core 2 Quad and 
Proteus generated hardware accelerator 

Design Frame 
rate 

Speedup 
over SW 

Speedup per 
Hz 

Speedup per Hz 
per thread 

SW 5.26 1 1 1 
HW 22 4.18 167.2 668.8 

4. RESULT SUMMARY AND ANALYSIS 
This section presents a brief retrospective review of the 

performance and design of streaming accelerators. It is presented 
with the hindsight of what was learned from the RSVP and 
Proteus projects. 

Programming Model 
With the separation of concerns between communication and 

computation, we find that software complexity and 
comprehensibility can improve. When the programmer explicitly 
expresses the data access and communication, we can generate 
the appropriate memory structures such as buffers and bus 
networks that implement the memory subsystem. In addition, the 
datapath is simplified without complex load/store and memory 
stall logic. 

We also find aspects of reuse and faster algorithm 
development because the sDFG is free from aspects related to 
the memory infrastructure. That is, the computation is free from 
elements related to operation hoisting and other manipulations 
due to memory latency. 

The familiar single-core programming model is well accepted 
and preferred by programmers. However, most programmers 
have an initial adverse reaction to sDFG as a non-C/C++ 
programming language. As such, we are continuing our efforts 
for compiler generated sDFG to further facilitate programming 
in our stream programming model. 

Memory Bandwidth 
In our streaming paradigm, we are effectively dedicating 

chip-area (or transistors) to the movement of data using memory 
address generators rather than to the buffering of data in large 
caches. Our experiments [4,6,7,8,9] show that data prefetching is 



 
an effective mechanism to take advantage of available 
bandwidth in between peak access periods. The performance 
becomes dependent more on average bandwidth of the memory 
subsystem and less sensitive to peak latency of any memory 
access. There is an overall reduction in processor stalls due to 
slow memory access, which also help alleviate memory wall 
issues that limit today’s traditional architectures. 

We find that stream descriptors are reasonable means to 
express stream data of varying complexity. Because they are not 
dependent on compiler manipulation and discovery of data 
dependencies, stream descriptors are better able to express the 
actual movement of data because the programmer directly states 
the actual grouping of data. There is no dependence on a 
compiler to deconstruct complex nested loop structures to find 
an optimal scheduling of data transfers. 

We have explored different means to describe harmonic 
sequences of memory accesses and have plans on extending the 
stream descriptors with the addition of an Offset parameter 
consisting of a user defined function that computes the dynamic 
change in shape and location of the next stream record. We are 
planning to extend our application suite to database and 
scientific algorithms. 

Stream Unit 
The stream unit design can be very complicated since it 

handles every possible access from the datapath and all data 
shapes described in the stream descriptors. An ideal design 
would represent a hardware implementation similar to that of a 
large multiport register file which is difficult to scale. We find 
that we can optimize the stream unit design based on the data 
shape described by the stream descriptors and based on the 
maximum set of stream elements required by the datapath.  

Our experiments show a need to have a sufficiently high 
performance memory subsystem and bus protocols [7]. Modern 
bus protocols and advanced streaming memory controllers that 
can support multiple pending requests are needed to sustain the 
throughput of the hardware accelerators. 

ISA extensions 
The interconnection network within the datapath allows for 

the formation of deep pipelines. However, if the type of 
functional units are not selected correctly, the hardware 
resources quickly become scarce because the compiler is not 
able to schedule timely operations on them. The result would be 
longer execution time with many NOPs in the VLIW slots. To 
address this issue, profiling is done on the application suite in 
order to find the proper mix of functional units for the SoC 
design. For a reconfigurable hardware platform such as FPGA, 
the specific set of functional units for that algorithm can be 
selected instead. 

For certain imaging related applications, we have found the 
need to increase the size of internal buffers to hold intermediate 
data. These buffers form internal look-up-tables allowing a more 
flexible data-dependent access. 

We have found larger speedups for larger kernels. This is 
because the setup time required to configure the hardware is 
better amortized over longer kernel executions. As such, we 
have explored the use of merging multiple kernels to reduce the 
effect of the setup overhead.  

FPGA cells 
The distributed SRAMs and logic resources in an FPGA 

make it amenable for a system using streaming hardware 

accelerators. With the streaming paradigm, there is no 
dependence on large caches to get higher performance. Instead, 
stream units are used to move data efficiently through the 
memory subsystem. 

On the other hand, the logic cells consisting of four or six 
input LUT (look up tables) make it less efficient to map wide 
functional units, especially those with irregular bit-widths 
(required for precision). Furthermore, multiplexer structures for 
the interconnection fabric become a significant consumer of 
LUTs with larger kernels requiring larger number of functional 
units. 

5. CONCLUSIONS 
Streaming hardware accelerators are as compelling as they 

were earlier this decade because there are still applications 
demanding high performance and efficient computing platforms 
that can not be delivered with today’s processors. The RSVP and 
Proteus-generated streaming hardware accelerators were 
successfully designed and used with our stream programming 
paradigm.  

For the RSVP and Proteus projects, we took a conservative 
approach to rely on the programmer to explicitly define the 
computation separately from the data movement. Our intent was 
to accelerate an application using a familiar single-core 
programming model, and at various points in time, we had 
considered integrating a more advanced compiler infrastructure 
to bridge the programming gap. Because of several reasons, such 
as financial support, we did not increase the scope of the project 
to include compiler technology. We have also found that the 
barriers for adopting new languages or models of computation 
are large. Other contributions related to our core architectural 
issues such the separation of concerns and mechanisms to hide 
memory latency with deep pipelining have allowed us to quickly 
develop state of the art product prototypes, ranging from smart 
cameras to video teleconferencing.  
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