Extending a Stream Programming Paradigm
to HardwareAccelerator Platforms

Sek M. Che
Motorola, Inc.
Schaumburg, IL, USA
sek.chai@motorola.com

ABSTRACT

NikolaosBellas
Computer Engineering and
Communications Department
University of Thessaly, Volos, Greece
nbellas@uth.gr

Abelardo Lope-Laguna:
Departamento de
Electronica y Control
ITESM-Toluca, Mexico
abelardo.lopez@itesm.mx

data loads, stores, and alignment are assignededicaled

H|gh performance stream processing is Computamy)na| mechanisms called stream units. Tasks related ¢oatttual

intensive and localized, performing the same op®raiton many
data elements. These characteristics lend thenssklvefficient
hardware acceleration. In this paper, we descritsreaming
programming model in which computation
communication are explicitly separated and optichiz&e then
briefly describe hardware accelerators using theasting
programming model in two forms: an SoC coprocessdied
RSVP (Reconfigurable Streaming Vector Processomd a
synthesizable hardware accelerator using our actoital
synthesis tool called Proteus. We provide a reedspe of
performance, cumulating more than eight years séarch in
streaming hardware accelerators.

1. INTRODUCTION

Streaming processors are becoming a mainstreandigara
being applied to high performance computing. In taier
applications, streaming is becoming a necessargegie to
satisfy the computations’ needs such as low latera@y high
throughput. The computing model may also lend fitgel
efficient energy consumption with more efficientnding of
memory accesses.

Stream processors operate on data sequences osatiged
computation kernels. The memory access can bentiaistic
such that computation can hide memory latency wd#ta
prefetching. These characteristics, in turn, expaiata
parallelism for the computing platform, enabling@mpiler to
schedule data movement apart from the computat®pn.
operating on large sets of data, the streaming atatipn
reduces instruction overhead and hardware acoetesstup
time.

This paper is structured as follows. In Sectiom@ argue for
a streaming programming model whereby the compmunaand
communication are explicitly defined by the prograen. In
Section 3, we present the stream hardware acamigrat
including an SoC coprocessor and a toolset allovaeigpmatic
hardware synthesis. Section 4 summarizes our oftsang
about these accelerators as well as the toolselafavent.

2. STREAMING PROGRAMM ING MODEL

There are several programming languages that deshow
computation should be performed in streaming achitres.
Some examples are StreamIT[1], Brook[2], and Stveara[3].
We advocate a stream programming paradigm withragpa of
concerns between the tasks related to computatiod
communication. This separation of concerns decosgpdke
software into manageable and comprehensible pdresemve
can more easily identify and expose areas for pedace
improvement. Presently, we use a stream programmiadel
that allows a programmer to explicitly define thetad streams
between computation kernels or from memory. Tasich s

computation are grouped as a kernel and assigndddicated
hardware mechanisms called datapaths. The datepatiists of
functional units with a flexible interconnectiontwerk [4,5].

and dataFigure 1 illustrates an architectural template tstimg of stream

units and datapath.

The stream units make use of data prefetching bgihaent
techniques to move data elements ahead of the datiggpuand
arrange them in the order needed by the dataphib.i§ crucial
to keep the functional units busy; otherwise thefgpmance
gains would not be as significant.

A kernel of computation is a set of localized peswe
operations that are independent and self-contain€de
processing in each kernel is regular or repetitiveich often
comes in the form of a loop structure. These coatjuit kernels
can operate without frequent external interactionth other
kernels. Global variables are usually not referdrioea kernel.
Instead, the stream and other scalar values, Wiglthpersistent
state, are identified explicitly as variables idaa stream or as
signals between kernels. Kernel regularity, in tupnoduces
uniform memory access of data elements (or daearsis).
Stream data appear to be sequential to the congrutatrnels
even though data is usually scattered throughouatong

The programmer defines a computation kernel using a
streaming data flow graph (sDFG) language [6]. AF&D
consists of nodes, representing basic arithmetid kgical
operations, and directed edges representing thendepcy of
one operation on the output of a previous operatiath node
is denoted by a descriptor, which specifies thiofghg: input
operands, the operation, the minimum precisiont®foutput
value, and the signedness of the output result.

To express memory access or communication tasks, th
programmer uses stream descriptors as an appficatio
programming interface (API) to express the shapk lacation
of data in memory [7]. Within this paradigm, we idefthe term
stream elemenas the individual datum for processing. For
image processing applications, pixel values inraage are the
usual stream elements. A group of stream elemeakesnup a
stream record The grouping and the order of the stream
elements in the stream record corresponds to tledemped
alignment of the computation kernel. A stream dpsar is
represented by a seven tuple field consisting efftitiowing: a
start_addressof the first element in a stream recordstade
value indicating the spacing in stream elementsvéet two

aconsecutive elements in the stream recordspan value

indicating the number of stream elements that atheged
before the skip offset is applied, skip value indicating the
displacement in stream elements that is applieddsst groups
of span elements, tgpe indicating how many bytes are in each
element, and stream countvalue for the number of elements in
the stream record.

System Bus

Arbiter

& Bridge

A

PR b = v
= ' Input Stream To other
=] ! Input Stream
E Addr
3] : Queue To Output
=
ai Stre
1
1

U

Data Path
control

| Constants |!

I

Fig 1. Streamin accelerator template wiStream Unit and Data P

F

Line
buffers

3. STREAM HARDWARE ACCELERATORS

Our hardware architecture is based on a streanticglexator
template consisting of stream units and a datafstham units
transfer data to and from the memory system, whiedatapath
performs stream computation on the data. The aeteteruns
alongside the host processor instruction flow, wiith
participating with its control flow. Software symohization for
data coherence is needed for the accelerator toatepe
asynchronously with the host processor.

Reconfigurable Stream Vector Processor

RSVP™ is an SoC implementation based on the strepmi

accelerator template. The first chip has been dated using

TSMC 0.18m CMOS technology, it has 9.5-M transistors and

an area of 5.04 x 9.03 Mnit is integrated into an ARM946ES-
based SoC with a complete set of peripherals foerahedded
camera. A second generation design was completédhdiu
fabricated. Readers are referred to [4,6] for niwigrmation.

The use of RSVP has shown performance gains tmatera
from two to twenty times when compared to a conoeal
scalar core. Originally targeted for multimedia gessing, the
application suite consists of image processingewidodec and
other computer vision algorithms.

There are several development tools that faciliggtelication
development on the RSVP architecture. Among thosks tis a
cycle-accurate simulator of a system that incluB&V/P, an
ARM scalar core, and a memory controller whichapable of
simulating the behavior of the memory hierarchyluding
latency from the bus and most DRAM modules. Thelecyc
accurate simulator can collect metrics on the ttatesfers of the
scalar core, RSVP, and memory controller.

Proteus T ool set

The Proteus toolset [5] uses a template-based agiprtw
produce area-efficient hardware designs basedenadhstraints
of the application, user requirements, and systemstecaints.
The processor template consists of a memory mappetvare
accelerator consisting of stream units and a d#tapa

The following describes the Proteus design flowrstri
selected kernels of the sSDFGs and stream des@ipterused to
allocate a set of functional units (within resoucomstraints set
by the user). Then the computation sequence, rdsgnebseries
of VLIW (very long instruction word) instructionss defined

using modulo scheduling so that the processing @aerate
properly. Next, an interim hardware descriptioe 8 created to
list the components within the accelerator. A sétstate

machines is also created to generate the propérotaignals

for each functional unit. The hardware descriptfdierilog) is

then generated and synthesized into an FPGA. Troisegs is
repeated for each streaming kernel.

The stream unit design is also generated based
processing needs, in addition to user and systerstraints. The
size and number of buffer elements are chosen tet rife
performance of the bus as well as the target peeface of the
generated datapath. For example, the size of tlsealddress
queue is set so that bus transfers are sustairnteduwistalling
the datapath. The number of line buffers useddmedata is set
so that the stream unit can buffer the proper nurabelements
consumed by the datapath in each cycle.

We have shown performance improvements of Proteus
generated hardware accelerators for several afiptica[8]. As
an example, Table 1 shows the execution time ofers |
distortion correction algorithm in a software implentation on
a 2.5 GHz Core 2 Quad processor and FPGA hardwareng
on the Virtex-4 LX-80, 62.5 MHz FPGA [9]. For this
application, Proteus generated 100K lines of switable
Verilog and appropriate testbench from 800 linesFG code.

on

Table 1. Performance comparison between Core 2 @uad
Proteus generated hardware accelerator

Design| Frame Speedup | Speedup per Speedup per Hz
rate overSW | Hz per thread

SW 5.2€ 1 1 1

HW 22 4.1€ 167.2 668.¢

4. RESULT SUMMARY AND ANALYSIS

This section presents a brief retrospective revigwthe
performance and design of streaming acceleratossptesented
with the hindsight of what was learned from the RS¥nd
Proteus projects.

Programming M odel

With the separation of concerns between communbitathd
computation, we find that software complexity and
comprehensibility can improve. When the programengicitly
expresses the data access and communication, wgecamnate
the appropriate memory structures such as buffas laus
networks that implement the memory subsystem. diitiad, the
datapath is simplified without complex load/stored anemory
stall logic.

We also find aspects of reuse and faster algorithm
development because the sDFG is free from aspeltted to
the memory infrastructure. That is, the computatiofree from
elements related to operation hoisting and othemipogations
due to memory latency.

The familiar single-core programming model is vaaltepted
and preferred by programmers. However, most progiers
have an initial adverse reaction to sDFG as a n@€
programming language. As such, we are continuingefforts
for compiler generated sDFG to further facilitar®gramming
in our stream programming model.

M emory Bandwidth

In our streaming paradigm, we are effectively deting
chip-area (or transistors) to the movement of datag memory
address generators rather than to the bufferindatd in large
caches. Our experiments [4,6,7,8,9] show that plegtgetching is

an effective mechanism to take advantage of aueilab accelerators.

bandwidth in between peak access periods. The rpafece
becomes dependent more on average bandwidth ofidineory
subsystem and less sensitive to peak latency ofnaayory
access. There is an overall reduction in processils due to
slow memory access, which also help alleviate mgnvaall
issues that limit today's traditional architectures

We find that stream descriptors are reasonable snéan
express stream data of varying complexity. Bec#usg are not
dependent on compiler manipulation and discoverydata
dependencies, stream descriptors are better aldapiess the
actual movement of data because the programmentlgistates
the actual grouping of data. There is no dependentea
compiler to deconstruct complex nested loop strestuo find
an optimal scheduling of data transfers.

We have explored different means to describe haitnon

sequences of memory accesses and have plans owliegt¢he
stream descriptors with the addition of &ffset parameter
consisting of a user defined function that compthesdynamic
change in shape and location of the next streaordetVe are
planning to extend our application suite to databasd
scientific algorithms.

Stream Unit

The stream unit design can be very complicatedesiibc
handles every possible access from the datapathathrdhta
shapes described in the stream descriptors. Anl idesign
would represent a hardware implementation simdathat of a
large multiport register file which is difficult tecale. We find
that we can optimize the stream unit design basethe data
shape described by the stream descriptors and basetie
maximum set of stream elements required by thepd#ia

Our experiments show a need to have a sufficiehity
performance memory subsystem and bus protocoldv@ilern
bus protocols and advanced streaming memory ctersohat
can support multiple pending requests are needsddiain the
throughput of the hardware accelerators.

| SA extensions

The interconnection network within the datapattowedi for
the formation of deep pipelines. However, if thepeyof
functional units are not selected correctly, therdhare
resources quickly become scarce because the conipileot
able to schedule timely operations on them. Theltresuld be
longer execution time with many NOPs in the VLIVétsl To
address this issue, profiling is done on the apptia suite in
order to find the proper mix of functional unitsrfthe SoC
design. For a reconfigurable hardware platform sasH-PGA,
the specific set of functional units for that al¢fom can be
selected instead.

For certain imaging related applications, we hauenél the
need to increase the size of internal buffers 1d imiermediate
data. These buffers form internal look-up-tabléswhg a more
flexible data-dependent access.

We have found larger speedups for larger kerneligs
because the setup time required to configure thdweaae is
better amortized over longer kernel executions. sésh, we
have explored the use of merging multiple kernelsetuce the
effect of the setup overhead.

FPGA cdls
The distributed SRAMs and logic resources in an APG
make it amenable for a system using streaming haew

With the streaming paradigm, there nis
dependence on large caches to get higher perfoenémstead,
stream units are used to move data efficiently ubho the
memory subsystem.

On the other hand, the logic cells consisting afr for six
input LUT (look up tables) make it less efficient map wide
functional units, especially those with irregulait-widths
(required for precision). Furthermore, multiplexstructures for
the interconnection fabric become a significant stoner of
LUTs with larger kernels requiring larger numberfuarfictional
units.

5. CONCLUSIONS

Streaming hardware accelerators are as compelnthey
were earlier this decade because there are stilicagions
demanding high performance and efficient compugifagforms
that can not be delivered with today's processtine. RSVP and
Proteus-generated streaming hardware acceleratoese w
successfully designed and used with our streamramaging
paradigm.

For the RSVP and Proteus projects, we took a coatee
approach to rely on the programmer to explicithyirde the
computation separately from the data movement.i@ent was
to accelerate an application using a familiar srgire
programming model, and at various points in times had
considered integrating a more advanced compileasiructure
to bridge the programming gap. Because of sevessions, such
as financial support, we did not increase the saffke project
to include compiler technology. We have also fouhdt the
barriers for adopting new languages or models ofimgdation
are large. Other contributions related to our carehitectural
issues such the separation of concerns and meaotaids hide
memory latency with deep pipelining have allowedaiquickly
develop state of the art product prototypes, randiom smart
cameras to video teleconferencing.

6. ACKNOWLEDGEMENTS

The authors acknowledge previous many contributions
RSVP™ and Proteus design team at Motorola Labs.

7. REFERENCES

[1] W. Thies, et. al., StreamIT: A Language for StreamApplications. Intl
Conf on Compiler ConstructionLecture Notes in Computer Science
vol.2304, Springer-Verlag, London, 179-196

[2] I. Buck, et. al., Brook for GPUs: Stream ComputowgGraphics Hardware,

ACM SIGGRAPH 2004 PapersSIGGRAPH'04 ACM, New York, NY,

777-786

S. Wei Liao, et. al., Data and Computation Transfation for Brook

Streaming Applications on Multiprocessors, CGO,&00

S. Chiricescu et. al. The Reconfigurable StreamVfertor Processor,

RSVP™ MICRO-36,Dec. 2003, 141-150

N. Bellas, et. al. Template-based generation efshing accelerators from a

high level representatiofnternational Symposium on Field-Programmable

Custom Computing Machines (FCCMypril 2006, Napa Valley, CA

S. M. Chai, et. al.,, Streaming Processors for N@&eneration Mobile

Imaging Applications|EEE Communications Magazineol 43, no 12, Dec

2005, 81-89.

A. Lopez-Lagunas, S. Chai, “Streaming Data Movemfemt Real-Time

Image Analysis”,Journal of Signal Processing Systerpsiblished online,

January 22, 2009. To appear in a Special issueoompGter Architecture for

Real Time Analysis.

N. Bellas, et. al., FPGA Implementation of a Licefate Recognition SoC

using Automatically Generated Streaming Accelesath” Reconfigurable

Architecture Workshop (RAWApril 2006, Rhodes, Greece

N. Bellas, et. al.,, Real-Time Fisheye Lens DistortiCorrection Using

Automatically Generated Streaming Acceleratbnsernational Symposium

on Field-Programmable Custom Computing MachinesGM}, April 2009,

Napa Valley, CA

(3
(4
(5]

6l

(1

(8l

[

