

ABSTRACT
High performance stream processing is computationally

intensive and localized, performing the same operations on many
data elements. These characteristics lend themselves for efficient
hardware acceleration. In this paper, we describe a streaming
programming model in which computation and data
communication are explicitly separated and optimized. We then
briefly describe hardware accelerators using the streaming
programming model in two forms: an SoC coprocessor called
RSVP (Reconfigurable Streaming Vector Processor), and a
synthesizable hardware accelerator using our architectural
synthesis tool called Proteus. We provide a retrospective of
performance, cumulating more than eight years of research in
streaming hardware accelerators.

1. INTRODUCTION
Streaming processors are becoming a mainstream paradigm

being applied to high performance computing. In certain
applications, streaming is becoming a necessary element to
satisfy the computations’ needs such as low latency and high
throughput. The computing model may also lend itself to
efficient energy consumption with more efficient handling of
memory accesses.

Stream processors operate on data sequences using localized
computation kernels. The memory access can be deterministic
such that computation can hide memory latency with data
prefetching. These characteristics, in turn, expose data
parallelism for the computing platform, enabling a compiler to
schedule data movement apart from the computation. By
operating on large sets of data, the streaming computation
reduces instruction overhead and hardware accelerator setup
time.

This paper is structured as follows. In Section 2, we argue for
a streaming programming model whereby the computation and
communication are explicitly defined by the programmer. In
Section 3, we present the stream hardware accelerators,
including an SoC coprocessor and a toolset allowing automatic
hardware synthesis. Section 4 summarizes our observations
about these accelerators as well as the toolset development.

2. STREAMING PROGRAMMING MODEL
There are several programming languages that describe how

computation should be performed in streaming architectures.
Some examples are StreamIT[1], Brook[2], and Streamware[3].
We advocate a stream programming paradigm with separation of
concerns between the tasks related to computation and
communication. This separation of concerns decomposes the
software into manageable and comprehensible parts where we
can more easily identify and expose areas for performance
improvement. Presently, we use a stream programming model
that allows a programmer to explicitly define the data streams
between computation kernels or from memory. Tasks such as

data loads, stores, and alignment are assigned to dedicated
mechanisms called stream units. Tasks related to the actual
computation are grouped as a kernel and assigned to dedicated
hardware mechanisms called datapaths. The datapath consists of
functional units with a flexible interconnection network [4,5].
Figure 1 illustrates an architectural template consisting of stream
units and datapath.

The stream units make use of data prefetching and alignment
techniques to move data elements ahead of the computation and
arrange them in the order needed by the datapath. This is crucial
to keep the functional units busy; otherwise the performance
gains would not be as significant.

A kernel of computation is a set of localized processor
operations that are independent and self-contained. The
processing in each kernel is regular or repetitive, which often
comes in the form of a loop structure. These computation kernels
can operate without frequent external interactions with other
kernels. Global variables are usually not referenced in a kernel.
Instead, the stream and other scalar values, which hold persistent
state, are identified explicitly as variables in a data stream or as
signals between kernels. Kernel regularity, in turn, produces
uniform memory access of data elements (or data streams).
Stream data appear to be sequential to the computation kernels
even though data is usually scattered throughout memory.

The programmer defines a computation kernel using a
streaming data flow graph (sDFG) language [6]. A sDFG
consists of nodes, representing basic arithmetic and logical
operations, and directed edges representing the dependency of
one operation on the output of a previous operation. Each node
is denoted by a descriptor, which specifies the following: input
operands, the operation, the minimum precision of its output
value, and the signedness of the output result.

To express memory access or communication tasks, the
programmer uses stream descriptors as an application
programming interface (API) to express the shape and location
of data in memory [7]. Within this paradigm, we define the term
stream element as the individual datum for processing. For
image processing applications, pixel values in an image are the
usual stream elements. A group of stream elements makes up a
stream record. The grouping and the order of the stream
elements in the stream record corresponds to the preferred
alignment of the computation kernel. A stream descriptor is
represented by a seven tuple field consisting of the following: a
start_address of the first element in a stream record, a stride
value indicating the spacing in stream elements between two
consecutive elements in the stream record, a span value
indicating the number of stream elements that are gathered
before the skip offset is applied, a skip value indicating the
displacement in stream elements that is applied between groups
of span elements, a type indicating how many bytes are in each
element, and a stream_count value for the number of elements in
the stream record.

Extending a Stream Programming Paradigm
to Hardware Accelerator Platforms

Sek M. Chai
Motorola, Inc.

Schaumburg, IL, USA
sek.chai@motorola.com

Nikolaos Bellas
Computer Engineering and

Communications Department
University of Thessaly, Volos, Greece

nbellas@uth.gr

Abelardo Lopez-Lagunas
Departamento de

Electronica y Control
ITESM-Toluca, Mexico

abelardo.lopez@itesm.mx

Control
Registers

Multiplexer Tree

FU

c
o

n
tr

o
l

FU

c
o

n
tr

o
l

RegisterAcc

Line
buffers

Data alignmentAGU

Arbiter & Bridge

System Bus

Input Stream

To Output
Stream

Constants

Streaming Data

Bus Line Buffer

Stream Buffer

To other
Input Stream

S
tr

e
a

m
U

n
it

D
a

ta
P

a
th

Addr
Queue

Register

Control
Registers

Multiplexer Tree

FU

c
o

n
tr

o
l

FU

c
o

n
tr

o
l

RegisterAcc

Line
buffers

Data alignmentAGU

Arbiter & Bridge

System Bus

Input Stream

To Output
Stream

Constants

Streaming Data

Bus Line Buffer

Stream Buffer

To other
Input Stream

S
tr

e
a

m
U

n
it

D
a

ta
P

a
t h

Addr
Queue

Register

Control
Registers

Multiplexer Tree

FU

c
o

n
tr

o
l

FU

c
o

n
tr

o
l

RegisterAcc

Line
buffers

Data alignmentAGU

Arbiter & Bridge

System Bus

Input Stream

To Output
Stream

Constants

Streaming Data

Bus Line Buffer

Stream Buffer

To other
Input Stream

S
tr

e
a

m
U

n
it

D
a

ta
P

a
t h

Addr
Queue

Register

Fig 1. Streaming accelerator template with Stream Unit and Data Path

3. STREAM HARDWARE ACCELERATORS
Our hardware architecture is based on a streaming accelerator

template consisting of stream units and a datapath. Stream units
transfer data to and from the memory system, while the datapath
performs stream computation on the data. The accelerator runs
alongside the host processor instruction flow, without
participating with its control flow. Software synchronization for
data coherence is needed for the accelerator to operate
asynchronously with the host processor.

Reconfigurable Stream Vector Processor
RSVP™ is an SoC implementation based on the streaming

accelerator template. The first chip has been fabricated using
TSMC 0.18µm CMOS technology, it has 9.5-M transistors and
an area of 5.04 × 9.03 mm2. It is integrated into an ARM946ES-
based SoC with a complete set of peripherals for an embedded
camera. A second generation design was completed but not
fabricated. Readers are referred to [4,6] for more information.

The use of RSVP has shown performance gains that range
from two to twenty times when compared to a conventional
scalar core. Originally targeted for multimedia processing, the
application suite consists of image processing, video codec and
other computer vision algorithms.

There are several development tools that facilitate application
development on the RSVP architecture. Among those tools is a
cycle-accurate simulator of a system that includes RSVP, an
ARM scalar core, and a memory controller which is capable of
simulating the behavior of the memory hierarchy, including
latency from the bus and most DRAM modules. The cycle
accurate simulator can collect metrics on the data transfers of the
scalar core, RSVP, and memory controller.

Proteus Toolset
The Proteus toolset [5] uses a template-based approach to

produce area-efficient hardware designs based on the constraints
of the application, user requirements, and system constraints.
The processor template consists of a memory mapped hardware
accelerator consisting of stream units and a datapath.

The following describes the Proteus design flow. First
selected kernels of the sDFGs and stream descriptors are used to
allocate a set of functional units (within resource constraints set
by the user). Then the computation sequence, resembling a series
of VLIW (very long instruction word) instructions, is defined

using modulo scheduling so that the processing can operate
properly. Next, an interim hardware description file is created to
list the components within the accelerator. A set of state
machines is also created to generate the proper control signals
for each functional unit. The hardware description (Verilog) is
then generated and synthesized into an FPGA. This process is
repeated for each streaming kernel.

The stream unit design is also generated based on
processing needs, in addition to user and system constraints. The
size and number of buffer elements are chosen to meet the
performance of the bus as well as the target performance of the
generated datapath. For example, the size of the bus address
queue is set so that bus transfers are sustained without stalling
the datapath. The number of line buffers used to store data is set
so that the stream unit can buffer the proper number of elements
consumed by the datapath in each cycle.

We have shown performance improvements of Proteus
generated hardware accelerators for several applications [8]. As
an example, Table 1 shows the execution time of a lens
distortion correction algorithm in a software implementation on
a 2.5 GHz Core 2 Quad processor and FPGA hardware running
on the Virtex-4 LX-80, 62.5 MHz FPGA [9]. For this
application, Proteus generated 100K lines of synthesizable
Verilog and appropriate testbench from 800 lines of sDFG code.

Table 1. Performance comparison between Core 2 Quad and
Proteus generated hardware accelerator

Design Frame
rate

Speedup
over SW

Speedup per
Hz

Speedup per Hz
per thread

SW 5.26 1 1 1
HW 22 4.18 167.2 668.8

4. RESULT SUMMARY AND ANALYSIS
This section presents a brief retrospective review of the

performance and design of streaming accelerators. It is presented
with the hindsight of what was learned from the RSVP and
Proteus projects.

Programming Model
With the separation of concerns between communication and

computation, we find that software complexity and
comprehensibility can improve. When the programmer explicitly
expresses the data access and communication, we can generate
the appropriate memory structures such as buffers and bus
networks that implement the memory subsystem. In addition, the
datapath is simplified without complex load/store and memory
stall logic.

We also find aspects of reuse and faster algorithm
development because the sDFG is free from aspects related to
the memory infrastructure. That is, the computation is free from
elements related to operation hoisting and other manipulations
due to memory latency.

The familiar single-core programming model is well accepted
and preferred by programmers. However, most programmers
have an initial adverse reaction to sDFG as a non-C/C++
programming language. As such, we are continuing our efforts
for compiler generated sDFG to further facilitate programming
in our stream programming model.

Memory Bandwidth
In our streaming paradigm, we are effectively dedicating

chip-area (or transistors) to the movement of data using memory
address generators rather than to the buffering of data in large
caches. Our experiments [4,6,7,8,9] show that data prefetching is

an effective mechanism to take advantage of available
bandwidth in between peak access periods. The performance
becomes dependent more on average bandwidth of the memory
subsystem and less sensitive to peak latency of any memory
access. There is an overall reduction in processor stalls due to
slow memory access, which also help alleviate memory wall
issues that limit today’s traditional architectures.

We find that stream descriptors are reasonable means to
express stream data of varying complexity. Because they are not
dependent on compiler manipulation and discovery of data
dependencies, stream descriptors are better able to express the
actual movement of data because the programmer directly states
the actual grouping of data. There is no dependence on a
compiler to deconstruct complex nested loop structures to find
an optimal scheduling of data transfers.

We have explored different means to describe harmonic
sequences of memory accesses and have plans on extending the
stream descriptors with the addition of an Offset parameter
consisting of a user defined function that computes the dynamic
change in shape and location of the next stream record. We are
planning to extend our application suite to database and
scientific algorithms.

Stream Unit
The stream unit design can be very complicated since it

handles every possible access from the datapath and all data
shapes described in the stream descriptors. An ideal design
would represent a hardware implementation similar to that of a
large multiport register file which is difficult to scale. We find
that we can optimize the stream unit design based on the data
shape described by the stream descriptors and based on the
maximum set of stream elements required by the datapath.

Our experiments show a need to have a sufficiently high
performance memory subsystem and bus protocols [7]. Modern
bus protocols and advanced streaming memory controllers that
can support multiple pending requests are needed to sustain the
throughput of the hardware accelerators.

ISA extensions
The interconnection network within the datapath allows for

the formation of deep pipelines. However, if the type of
functional units are not selected correctly, the hardware
resources quickly become scarce because the compiler is not
able to schedule timely operations on them. The result would be
longer execution time with many NOPs in the VLIW slots. To
address this issue, profiling is done on the application suite in
order to find the proper mix of functional units for the SoC
design. For a reconfigurable hardware platform such as FPGA,
the specific set of functional units for that algorithm can be
selected instead.

For certain imaging related applications, we have found the
need to increase the size of internal buffers to hold intermediate
data. These buffers form internal look-up-tables allowing a more
flexible data-dependent access.

We have found larger speedups for larger kernels. This is
because the setup time required to configure the hardware is
better amortized over longer kernel executions. As such, we
have explored the use of merging multiple kernels to reduce the
effect of the setup overhead.

FPGA cells
The distributed SRAMs and logic resources in an FPGA

make it amenable for a system using streaming hardware

accelerators. With the streaming paradigm, there is no
dependence on large caches to get higher performance. Instead,
stream units are used to move data efficiently through the
memory subsystem.

On the other hand, the logic cells consisting of four or six
input LUT (look up tables) make it less efficient to map wide
functional units, especially those with irregular bit-widths
(required for precision). Furthermore, multiplexer structures for
the interconnection fabric become a significant consumer of
LUTs with larger kernels requiring larger number of functional
units.

5. CONCLUSIONS
Streaming hardware accelerators are as compelling as they

were earlier this decade because there are still applications
demanding high performance and efficient computing platforms
that can not be delivered with today’s processors. The RSVP and
Proteus-generated streaming hardware accelerators were
successfully designed and used with our stream programming
paradigm.

For the RSVP and Proteus projects, we took a conservative
approach to rely on the programmer to explicitly define the
computation separately from the data movement. Our intent was
to accelerate an application using a familiar single-core
programming model, and at various points in time, we had
considered integrating a more advanced compiler infrastructure
to bridge the programming gap. Because of several reasons, such
as financial support, we did not increase the scope of the project
to include compiler technology. We have also found that the
barriers for adopting new languages or models of computation
are large. Other contributions related to our core architectural
issues such the separation of concerns and mechanisms to hide
memory latency with deep pipelining have allowed us to quickly
develop state of the art product prototypes, ranging from smart
cameras to video teleconferencing.

6. ACKNOWLEDGEMENTS
The authors acknowledge previous many contributions by

RSVP™ and Proteus design team at Motorola Labs.

7. REFERENCES
[1] W. Thies, et. al., StreamIT: A Language for Streaming Applications. Intl

Conf on Compiler Construction, Lecture Notes in Computer Science,
vol.2304, Springer-Verlag, London, 179-196

[2] I. Buck, et. al., Brook for GPUs: Stream Computing on Graphics Hardware,
ACM SIGGRAPH 2004 Papers, SIGGRAPH’04, ACM, New York, NY,
777-786

[3] S. Wei Liao, et. al., Data and Computation Transformation for Brook
Streaming Applications on Multiprocessors, CGO, 2006

[4] S. Chiricescu et. al. The Reconfigurable Streaming Vector Processor,
RSVP™, MICRO-36, Dec. 2003, 141-150

[5] N. Bellas, et. al. Template-based generation of streaming accelerators from a
high level representation. International Symposium on Field-Programmable
Custom Computing Machines (FCCM), April 2006, Napa Valley, CA

[6] S. M. Chai, et. al., Streaming Processors for Next Generation Mobile
Imaging Applications, IEEE Communications Magazine, vol 43, no 12, Dec
2005, 81-89.

[7] A. López-Lagunas, S. Chai, “Streaming Data Movement for Real-Time
Image Analysis”, Journal of Signal Processing Systems, published online,
January 22, 2009. To appear in a Special issue on Computer Architecture for
Real Time Analysis.

[8] N. Bellas, et. al., FPGA Implementation of a License Plate Recognition SoC
using Automatically Generated Streaming Accelerators. 13th Reconfigurable
Architecture Workshop (RAW), April 2006, Rhodes, Greece

[9] N. Bellas, et. al., Real-Time Fisheye Lens Distortion Correction Using
Automatically Generated Streaming Accelerators, International Symposium
on Field-Programmable Custom Computing Machines (FCCM), April 2009,
Napa Valley, CA

